Error
Sin subcategorias

Pregunta de Matemáticas

Si hay 8 puntos no colineales marcados en un papel, ¿cuál es el número de triángulos que se pueden trazar?

A)  

24

B)  

56

C)  

336

D)  

512

Soluciones

P

Precavidos

hace 22 meses

Solución Aprobada

11

Si hay 8 puntos no colineales marcados en un papel, se pueden trazar 28 triángulos diferentes.

La fórmula para calcular el número de triángulos que se pueden trazar con "n" puntos es: n choose 3, o C(n,3), que se puede calcular utilizando la fórmula binomial:

C(n,3) = n! / (3! * (n - 3)!)

donde "!" significa factorial.

En este caso, n = 8, por lo que:

C(8,3) = 8! / (3! * (8 - 3)!) = 8! / (3! * 5!) = 56

Por lo tanto, hay 56 triángulos diferentes que se pueden trazar con 8 puntos no colineales.

Avatar

Jorge

hace 17 meses

Solución

0

a.1,1

b.2,2

c.3,3

d.4,4

e.5,5

Agregar una solución

No te pierdas la oportunidad de ayudar a los demás. ¡Regístrate o inicia sesión para agregar una solución!