En un laboratorio se lleva un registro del número de bacterias, en millones, que crecen en función del tiempo para dos muestras diferentes. Si la primera muestra se encuentra expresada por y la segunda mediante , donde t representa el tiempo en minutos, determine el tiempo en el que las muestras son iguales.
1
Para resolver el problema de encontrar el tiempo en el que las dos muestras de bacterias tienen el mismo número, seguimos estos pasos:
Problema:
Se tiene la función que describe el crecimiento de bacterias en dos muestras diferentes:
Paso 2: Igualar las funciones
Queremos encontrar el tiempo t en el que las dos muestras tienen el mismo número de bacterias, es decir, igualar las dos expresiones:
310t = 315−9t
Paso 3: Resolver la ecuación
Dado que las bases son iguales, podemos igualar los exponentes:
10t=15−9t
Resolvemos para t:
Suma 9t a ambos lados de la ecuación: 10t+9t=15 / 10t + 9t
Divide ambos lados por 19: t=15/19t
Conclusión
El tiempo en el que las muestras tienen el mismo número de bacterias es t=15/19 minutos.
No te pierdas la oportunidad de ayudar a los demás. ¡Regístrate o inicia sesión para agregar una solución!
Ayuda a la comunidad respondiendo algunas preguntas.
En un centro de salud se registró el peso de …
Un ingeniero eléctrico está instalando lámparas de iluminación externa en …
En el suelo del patio de un colegio se dibuja …
El diagrama de cajón adjunto representa la distribución de las …
Al desarrollar la expresión (2x5+y)2, el resultado es.
Complete el enunciado Un químico hace la aleación de dos …
Si Pablo tiene el triple de la edad de Andrea …
¿Cuál es el resultado de √(2) − √(8) + √(18)? …
Una urna contiene en total 36 bolitas de dos tipos, …
En la resolución de un problema electrónico se simplificó la …
Prueba tu conocimiento, resuelve estos simuladores similares al examen Transformar
Realiza una pregunta y entre todos de esta comunidad la responderemos.
Prepárate con ejercicios adicionales