Error
Conteo y combinatoria

Pregunta de Razonamiento Numérico

¿Cuántos puntos de dos coordenadas (x, y), se pueden generar con los dígitos 0, 1, 2, 3, 4, 5, 6, teniendo en cuenta que no es posible repetir los números? 

A)  

12

B)  

30

C)  

42

D)  

36

Soluciones

Avatar

francisco_talbot

hace 35 meses

Solución Aprobada

7

La fórmula de arriba está mal aplicada, no sería esa. En cambio debería utilizarse esta fórmula en casos que no se pueda repetir los números.

n= población general (es decir los números con los que vamos a hacer las combinatorias

r= es la cantidad de la población general que vamos a utilizar
n!(n-r)! =7!(7-2)! = 42


Avatar
Pero de donde saca el 2?
Avatar
el dos es el resultado de x y y porque son 2 variables
A

adriana36

hace 42 meses

Solución Aprobada

5

Solución:

Permutación: es la manera de tomar de un conjunto de n elementos k de ellos, donde el orden de selección es relevante. La ecuación que cuenta la cantidad de permutaciones es:

Perm(n,k) = n!/[k!*(n-k)!]

En este caso: tenemos 6 dígitos que son 0, 1, 2, 3, 4, 5, 6; entonces queremor formar puntos (x,y) e importa el orden, entonces:

Perm(6,2) = 7!/[2!*(7-2)!] = 5040/(2!*5!) = 5040/120 = 42

Se pueden generar 42 puntos

Avatar

dario59

hace 16 meses

Solución

1

1. El primer dígito (x) puede ser cualquiera de los 7 dígitos disponibles (0, 1, 2, 3, 4, 5, 6).

2. Una vez que hayamos seleccionado el primer dígito (x), quedan 6 dígitos disponibles para el segundo dígito (y) ya que no podemos repetir el número que usamos para x, osea el "0" porque quedaría (0 , 0) .

Entonces, el número total de puntos únicos que se pueden generar es:

7 (opciones para x) * 6 (opciones para y después de seleccionar x) = 42

Agregar una solución

No te pierdas la oportunidad de ayudar a los demás. ¡Regístrate o inicia sesión para agregar una solución!